By-Niskanen Erddi A.
School Achievement and Personality. Description of School Actievement in Terms of Ability, Trait, Situational and Background Variables. III: Operations at the Factor Level.
University of Helsinki (Finland). Inst. of Edveation.
Pub Date Oct 68
Note-43p.
ÉDRS Price MF-S0.25 HC-S225
Descriptors-\# Academic Achievement, Correlation, *Factor Analysis, *Factor Structure, Hypothesis Testing Individual Characteristics. Personality, \#Statistical Analysis, Statistical Data, \#Student Characteristics Identifiers-Helsinki, Findand

This monograph contains the third section, operations at the factor level, of a report of studies done in Helsinki. Finland, describing school, achievement in terms of ability, trait, situational, and background variables. The report (1) investigates the structure of school achievement. (2) describes school achievement in terms of selected personality variables, and (3) applies multidimensional statistical operations in situations where it is considered desirable to reduce the number of dimensions and to describe a set of dependent variables in terms of a set of independent variables in a single operation. Part III presents the mathematical and statistical operations transforming groups of variables into factors, and describes the analysis models employed. To bring the description to a more general level, to simplify the research design, and to make possible a more concise interpretation of the results, the dependent or school achievement variables and the independent or personality variables are transformed into factor level variables by means of factor scores. Information provided by correlation coefficients, factor analyses, congruence coefficients, and canonical analyses are employed to describe school achievement in terms of the personality variables of the study. (BP)
U.S. DEPARTMENT OF HEALTH, EDUCATIOH \& WELFARE OFFICE OF EDUCAIIOM

THIS DOCUMENT HAS BEEN REPRODUCED EXaCtIY AS RECEIVED FROM THE PERSOH OR ORGAMIZAIION ORIGIMAIIIM II. POIMTS OF VIEW OR OPIINONS STATED DO MOT MECESSARILY REPRESENT OFFICILL OFFICE OF EDUCation POSIIION OR POUCY.

RESEARCH BULLETIN

Institute of Education

University of Helsinki

Head:
Matti Koskenniemi
Professor of Education

Snellmaninkatu 10 A
Helsinki 17
Finland

No. 23
O-tober 1968

Erkki A. Niskanen

SCHOOL ACHIEVEMENT AND PERSONALITY Description of School Achievement in Terms of Ability, Trait, Situational and Background. Variables

III: Operations at the Factor Level

Erlkki A.Niskanen

SCHOOL $A C H I E V E M E N T$ AND PWRSONAIITY
Description of Achool Achievement in Terms of fibility, Irait, Situational and Jackground Variables
III: Operations et the ractor Ievel

Institute of Education University of Helsinki 1968

Contents

Page
Plan of This Study 1

1. Summery 2
2. On the Principles Underlying the Operations at the
Pactor Level 3
3. The Estimation of Factor Scores 3
4. The Operations Performed 4
5. The Intercorrelations of Factor Scores 15
6. The Interreletions between Factor Scores, as
Suggested by the Factorial Models 28
7. The Results Based on Canonical Analysis 30
E.eferences 36

Plan of This Stucy
The following four parts of ay stuaies on school achievenent will be published in succession:
SCHOOL ACHIEVEMENT AND PERSONANIYY
Description of School Achievenent in Terms of Ability, Trait, Situational and Back; round Variables
I: Design and Hypotheses
IV: Results and Discussion
These parts are published as No. 21, Research Bulletin, Jnstitute of Education, University of Helsinki.
II: Operations at the Variable Level
This part is published as No. 22, Research Bulletin, Institute of Education, University of Helsinki.
III: Operations at the Factor Level
This part is included in this monograph.
Part III, Uperations at the Factor Level, presents the mr thematical and statistical operations at the factor level. This part presents the transformation of groups of variables into factors and describes the analysis models employed. The infornation obtained is only recorded in this part, and its discussion on the basis of the hypotheses is postponed to Part IV.
The approach followed in the study is such that an attempt is made to describe school achievement in terms of the othcr variables :chosen for the study; or, in other words, the other variables will be made to account for the variance of school achievement. This approach can be illustrated, in terms of matrices, by the following schematic representation. This matrix scheme also provides an opportunity for an analysis in terms of the matrix elements or vectors.
$\left[\begin{array}{ll}\text { (intelligence } & \text {) } \\ \text { (shaping dexterity } & \text {) } \\ \text { (persuasibility } & \\ \text { (pupils' traits as rated }) \\ \text { by teacher } \\ \text { (attitudes } \\ \text { (sociometric variables } & \\ \text { (social status } & \\ \text { (number of siblings } & \\ \hline\end{array}\right.$

1. Summary

The series of studies on school achievement reported here is concerned with the following three problem axeas:

1. investicfation of the structure of school achievement
2. description of school achievemert in terms of selected personality variebles
3. application of multidimensional statistical operations in situations where it is considered desirable to reduce the number of dimensions and to describe a set of dependent variables in terms of a set of independent variables in a sintle operation. The present Part III, entitled Operations at the Factor Ievel, is method-centred.
Citizenship school pupils (compulsory school, years 7 and 8) served as subjects in the study; the sample of subjects included 97-87 girls and 80-70 boys.
To brine the description to a more general level, to simplify the research design and to make possible a more concise interpretation of the results, the \quad a e pendent or school achievement variables and the independent or personality variables were transformed into factor-level variables by means of factor scores.
The information proviced by correlation coefficients, factor analyses, consuence coefficients and canonical analyses can be employed to describe school achievement in terms of the personality variables included in the study. The content of this information is presented in Part IV of the study.
4. On the Principles Underlying tho Operations at the Factor Level

In the preceding operations, which took place at the variable level, the elements of the matrices from which analysis was started, were variables which had not been combined by employing multi-variate techniques. The number of dimensions proved to be so large, however, that the general interpretation of the results was difficult. Therefore, in the following operations an attempt will be made to use the vectors corresponding to the element matrices as the elements of new matrices. This amounts to a reduction in the number of dimensions. The canonical analyses carried out also revealed that the interrelations between the variables disturbed the operations. From the standpoint of the description technique it is also an advantage to be able to control the interrelationships between the phenomena concerned. From the viewpoint of the theory of the behavioural sciences, asain, it is an advantage if the phenomena can be described in terms of more general dimensions.

All operations have been performed for tho girl group,boy group and the combined group. The operations at the variable level show that it is reasonable to keep firls and boys separate. The group of subjects being small the operations have also been performed for the combined group. The results obtained for this group can be used for controlling the operations and the reliability of results.
3. The Estimation of Factor Scores

When dimensions were combined, use was made of factor scores based on multi-variate techniques. Since the set of variables was heterogeneous, separate factor analyses were made of the school achievement variables and of the intelli-
gence variable battery. The rating-trait variables were excluded, because they did not span any dimensions even nearly invariant under changes of the subject group. The persuasibility, attitude, dexterity and sociometric variables were not factored. Their factorigation would not have been entirely unreasonable, but the battery would have become heterogeneous: it would have consisted of sets of variables differing in nature. Since the number of variables in each of the eroups mentioned was small, the writer found it possible to consider them exclusively at the variable level; being aware, however, that the interdependences of the variables within each group would manifest itself at least in the canonical analysis.

The requirement was imposed on the method to be used in the estimation of factor scores that it should meet the orthogonality condition to a sufficient extent. Heerman's method (Heerman 1963) would have satisfied this requirement. For the sake of simplicity, however, Lederman's shorter method was used here (Lederman 1939, Harman 1960). When this method is employed, information about the degree of orthogonality can be obtained by computing the intercorrelations of the factor scores.

4. The Operations Performed

The veriables contained in the matrix obtained are the following: the factor scores of the school achievement variables, the factor scores of the intelligence variables (the relevant factorial operations were presented in the section II where these variables were described) and the persuasibility, attitudinal, dexterity and sociometric variables per se. For this battery, the correlations were computed, a principal factorfactorization and a varimax rotation were carried out, and a canonical analysis was performed separately for each subject group through the Canon programme.

The results obtained by employing this battery still prof:d difficult to interpret, owing to the interdependences within the various sets of variables. This was particularly the case with the canonical analysis. Therefore, the results obtained will not be reported at this point. Instead, when the results of the further operations resorted to are described, those of the results of the above operaticns that were supplementary to the ones yielded by the further operations will be token into account, this being advisable because the new operations involved further combinations of dimensions.

One of the objectives of the study was the discovery and employment of mathematical and statistical operations which would permit shaping the pre-existing information in such a way that interpretations relevant to the material aims of the study would be rendered possible. The canonical. analysis did not prove, in the form applied here, fit for the study. The multicollinearity due to the interdependencies between the variables within various sets was difficult to allow for appropriately. When this method was used in operations at the variable level, where the interdependences were strong and the number of variables was large, it seemed to the writer that multicollinearity would result only in changes in the signs of the a and b coefficients of the vectors corresponding to each other. The operations at the factor level seem $\frac{0}{d}$ to suggest, however, that changes in the magnitude of the coefficients were also likely to emerge, and thus it would have been very difficult to use these coefficients for purposes of interpretation. The. Canon programme applied was also unsatisfactory, in that the variables are not identifiable. This, in turn, makes it difficult to check whether there have been errors in the computations. Because of these shortcomings in the programme, the writer asked the Computer Centre of the University of Helsinki Mathematical Institute for a revised programme, more suitable for the present operations.
\& new programe was, in fact, prepared (Canon, Nummi), and it is, in principle, in harmony with the mathematical foundations of canonical analysis as presented here. In the former programme, the vectors a_{i} and b_{i} were normalized in such a way that $a_{i}{ }^{2}=b_{i}^{2}=1$. In the normalization, the intercorrelations of the variables were not employed as a criterion. In the new programme, the variables are standardized, and a new canonical variate is formed by employing the weights obtained, and this variate is normalized in such a way that it will equal unity. Or, if the correlation matrix is denoted by R, then $R=Z Z{ }^{\prime \prime}$ The combined canonical variate is $\alpha{ }^{\prime} Z$. The normand faxpion is carried out as follows: $\alpha_{-}^{\prime} z Z, \alpha=1$. The weights computed in this way furnish information about multicollinearity. For, if the weights greatly exceed unity in absolute value, multicollinearity can be assumed to be present. This programe also provides additional information from which inferences can be made concerning the behaviour of individual variables. Moreover, variables can be identified when use is nade of this programme.

The writer found it advicable to replace the approach described above by another, in which the variables not subjected to factor analysis in the former version should be factor onclyz d, and factor scores should be computed for them just as for the school achievement and intellisenc variables. This approach made it possible to reduce the interdependences within the various sets of variables, to diminish the number of variables and to bring the description entirely on to the factor level.

The initial matrix for the factor analysis involved the attitude-dependent and attitude-independent persuasibility variables, the attitudinal and dexterity variables and the sociometric variables. This battery was factor analyzed by employing the principal factor and varimax methods. Five factors were expected to emerge. It proved necessary to extract six factors, however, in order for the variance
of attitude-dependent persuasibility to be included. For this factor analysis, the reader is referred to Tables 62-67.

Table 62. Unrotated factor matrix, Girls, $N=87$

Sibelius, $\begin{array}{lllllll}\mathrm{h}^{2} & 1 & 2 & 3 & 4 & 5 & 6\end{array}$ change score 1 . $16-.13-.16-.03-.00$. 22 . 25 gipsies, chanfe score $2 \quad .36-.39-.03 \quad .02 \quad .15$. 08 . 37
$\begin{array}{lllllll}\text { shift work, } \\ \text { change score } 3 & .17-.10-.14 & .04 & .21 & .26-.17\end{array}$
$\begin{array}{lll}\text { total picture, } \\ \text { aifference }\end{array}{ }_{4} .58-.40-.54-.19-.04 \quad .05-.17$
total object,
difference . $59-.48-.58-.09$. 21 . 05 . 10
attitudes
towards peers 6 . $53-.48 \quad .32-.05-.00-.00 \quad .28$
attitudes 7 . $65-.58-.23-.02$. 11 -. $31-.05$
towards teachers
attitudes 8 . $61-.67$. $10-.09-.06-.36-.03$
towards parents
attitudes 9 .77-.70 . $43-.06-.09$. 17 -. 20
towards mother
attitudes 10 . $74-.70 \quad .3 j-.12-.07$. $24-.07$ towards father
ornaments 11 . 54 . 20-.00-.64-.20 0 . 15 . 00
wire
bending $12 \quad .54 \quad .24 \quad .06-.58-.34-.13 \quad .06$
leadership $13 \quad .46 \quad .25 \quad .21-.34 \quad .46-.12 \quad .03$
$\begin{array}{llllllll}\text { companion- } & 14 \quad .46-.01 & .03-.38 \quad .55 \quad .04-.07\end{array}$
Eisenvalues $7.25332 .9171 .2221 .100 \quad .789$.518 420
$\begin{array}{lllllll}\text { Eifienvalues } & 51.81 & 20.84 & 8.74 & 7.85 & 5.64 & 3.70 \\ \text { as a percen_ } & 3.01\end{array}$
as a percen-
tage of the
number of variables

Table 63. Rotatcd factor matrix, Girls, $N=87$

Sibelius, 1 .16-.01-.06-.04-.05 . 08 . 38
 chenge score shift work, 3 . 17 -. .01-.08 . 10 . 07 . 39 . 05 chenge score total picture, 4 . $54-.03-.65-.13-.09$. 26 . 10 difference total object, 5 . 59-.01 -. 65-.00-.09 . 15 . 36 difference attitudes 6 . $42-.53-.01$. 08 . $04-.22$. 27 towards peers attitudes towards $7 \quad .64-.32-.68 \quad .22 \quad .05-.10 \quad .05$ teachers attitudes towerds $8 \quad .61-.53-.47 \quad .11 \quad .00-.29-.05$ parents attitudes towards $9-.76-.86-.08 \quad .05 \quad .05 \quad .11-.02$ mother attitudes towards $10-.69-.80-.11-.00-.03 \quad .13 \quad .13$
father ornaments 11 . $53 \quad .06-.00-.71 \quad .11 .05 \quad .04$ wire

benting

leadership
12 . $54 \quad .04 \quad .04-.67 \quad .05-.27-.09$
$13 \quad .46 \quad .08 \quad .16-.09 \quad .64-.08-.07$
compenion- 14 . $46-.04-.07-.06$. 64 . 18 . 02 ship
$6.96862 .1271 .6491 .105 \quad .887 \quad .563 \quad .635$
variances
of factors
Eigenvalues
as a percentage
of the number of $49.78 \quad 15.1911 .79 \quad 7.90 \quad 6.34 \quad 4.03 \quad 4.54$ variables

Table 64. Unrotated factor matrix, Boys, $N=70$

Table 65. Rotated factor matrix, Boys, $N=70$

		h^{2}	1	2	3	4	5	6
Sibelius,		. 24	-. 10	. 08	. 01	. 10	-. 20	. 40
change score gipsies, change	2	. 23	-. 03	. 04	. 04	-. 07	-. 46	-. 02
score shift work, change score	3	. 27	10	. 09	.00	-. 18	. 05	. 46
total picture, difference		. 51	. 01	. 13	. 70	. 03	-. 02	. 02
total object, difierence	5	. 52	. 00	. 14	. 68	-. 04	. 10	.15
attitudes towards peers		. 35	-. 22	-. 29	. 00	. 24	-. 38	. 10

(Table 65 continues)

		h^{2}	1	23	4	5	6	
attitudes	7	. 33	-. 25	. $01-.12$		-. 08	. 49	
towards teachers attitudes	8		82		--. 03		-. 04	
towards parents	8							
attitudes	9	. 60	-. 75	-. $10-.07$	- -. 07	-. 08	-. 11	
towards mother attitudes	10		-. 78	. 03.03	-. 0.06		-. 05	
towards father						. 26	26	
ornaments	11	. 48		-. 07 . 03	. 57			
wire bentine	12	. 44	. 11	-. $11-.0$. 01.64	-. 07	0	
leadership	13	. 58		-. $66-.02$. 22.36	-. 0.5	. 03	
companionship	14		-. 07	. 75.01				
variances of		6.506	2.02	271.198	. 984	1.010	. 539	. 752
Eigenvalues as a			14.48	8.52	7.03	7.22	3.85	5.38
percentage of th								

Table 66. Unrotated factor matrix, Girls + Boys, $N=157$
Sibelius, change 1 . $16-.07$. 03 . 01 -. 06 . 38 . 05
score
gipsies, chance score shift work, change score total picture, difference total object, difference
attitudes towards 6 . $40-.40-.26-.07-.17$. $25-.21$ peers
attitudes 7 . 46 -. $50-.06$. 19 . 19 -. 28 -. 22
towards teachers
attitudes
towards parents attitudes
towards mother attitudes towards father ornaments wire bending leadership companionship Eigenvalues Eigenvalues as a percentage of the number of variables

Table 67. Rotated factor matrix, Girls + Boys, $N=157$
$\begin{array}{llccccccc} & & h^{2} & 1 & 2 & 3 & 4 & 5 & 6 \\ \text { Sibelius, } & 1 & .16 & -.02 & .08 & .04 & .04 & .32 & -.21\end{array}$ change score gipsies, change 2 . $25-.13$. 03 . 12 -. 15 -. $00-.44$ score
shift work, $3 \quad .16$. $01-.09$. $08-.20 \quad .32 \quad .05$ change score total picture, 4 . $55-.07-.07$. 72 . 02 . $09-.02$ difference total object, 5 . $56-.07$. 09 . $72-.09-.03-.13$ difference attitudes 6 . $37-.30-.19$. 02 . 02 . $05-.49$ towards peers attitude towards
$7-.46-.34 \quad .01 \quad .34-.02-.46-.12$ teachers attitudes ${ }^{8}$. $52-.65 \quad .03 \quad .15-.06-.19-.19$ attitudes 9 . $68-.81-.04$. $04-.07$. 01 -. 09 towards mother
attitudes $\begin{array}{llllllll}\text { towards father } \\ \text { ornaments } & 11 & .48 & .03 & -.10 & .04 & .66-.08 & .17\end{array}$ $\begin{array}{lllllllll}\text { ornaments } & 11 & .48 & .03 & -.10 & .04 & .66 & -.08 & .07 \\ \text { wire bending } & 12 & .49 & .09 & -.07 & -.08 & .68 & .09 & -.01\end{array}$ lagership leadership 1
variances of factors
Eigenvalues as $\begin{array}{llllllll}\text { a percentage of } & 46.11 & 14.29 & 7.42 & 8.88 & 7.48 & 3.46 & 4.57\end{array}$ the number of variables

The factors obtained for the girl group are the following
I. An attitude factor
II. A factor of attitude-independent persuasibility (and the attitudes towards teachers and parents).
III. A dexterity factor
IV. A sociometric factor
V. A general persuasibility factor
VI. A factor of attitude-depeneent persuasibility

The factors for the boy group are the following:
I. An attitude factor
II. A sociometric factor
III. A factor of attitude-independent persuasibility
IV. A dexterity factor
V. A factor of attitude-dependent persuasibility
VI. A factor of attitude-dependent persuasibility (tre attitudes towards teachers variable obtained a negative loading).
The factors for the combined group are the following:
I. An attitude factor
II. A sociometric factor
III. A factor of attitude-independent persuasibility
IV. A dexterity factor
V. A factor of attitude-dopendent persuasibility (the attitudes towards teachers variable obtained a negative loading).
VI: A general persuasibility factor
The factor configurations for the various groups can be compared in terms of the congruence coefficients computed. The coefficients show that the attitude factors, sociometric factors and dexterity factors for the boy and the girl groups correspond to each other to a high degree (the coefficients were .94, . 92 and . 84 respectively). The correspondence between the persuasibility factors is not as close (.76, . 61 and .40). The factors of attitude-independent persuasibility for the two groups correspond ., however, very closely to each other. The above results are in the same direction as those yielded by transformation analysis. Congruence coefficients are presented in Tables 68-73.

Table 68. Congruence coefficients,

> Girls + Boys x Girls + Boys

$$
\begin{aligned}
(1 & =\text { Girls }+ \text { Boys } \\
2 & =\text { Girls } \\
3 & =\text { Boys })
\end{aligned}
$$

$\begin{array}{llllll}1 / 1 & 1 / 2 & 1 / 3 & 1 / 4 & 1 / 5 & 1 / 6\end{array}$
$1 / 1$ 1.00-.00-. $27 \quad .18 \quad .21 \quad .50$
$i / 2-.001 .00 \quad .03-.24-.04 \quad .09$
$1 / 3-.27 \quad .031 .00-.13-.12-.28$
$1 / 4 \quad .18-.24-.13 \quad 1.00-.12 \quad .18$
1/5 . $21-.04-.12-.12 \quad .99 \quad .02$
$1 / 6 \quad .50 \quad .09-.28 \quad .18 \quad .02 \quad .99$
Table 69. Congruence coefficients, Girls x Girls + Boys
$\begin{array}{lllllll} & 1 / 1 & 1 / 2 & 1 / 3 & 2 / 4 & 1 / 5 & 1 / 6 \\ 2 / 1 & .97 & .03 & -.21 & .17 & .16 & .59\end{array}$
2/2 . $47-.07-.92 \quad .15 \quad .33 \quad .35$
$2 / 3-.21 \quad .20 \quad .04-.94-.08-.30$
$2 / 4$. $06-.95-.12 \quad .24-.06-.07$
$2 / 5 \quad .03-.08 \quad .35-.32 \quad .54 \quad .32$
$2 / 6-.25 \quad .06 \quad .51-.18 \quad .24-.74$
Table 70. Congruence coefficients, Girls x Girls

$$
\begin{array}{llllll}
2 / 1 & 2 / 2 & 2 / 3 & 2 / 4 & 2 / 5 & 2 / 6
\end{array}
$$

$2 / 1 \quad 1.00 \quad .39-.22 \quad .04 \quad .07-.30$
$2 / 2 \quad .391 .00-.13 \quad .11-.16-.45$
$2 / 3-.22-.13 \quad 1.00-.17 \quad .07 \quad .14$
$\begin{array}{lllllllll}3 / 4 & .04 & .11 & -.17 & .99 & .00 & -.06\end{array}$
$2 / 5 \quad .07-.16 \quad .07 \quad .00 \quad .99 \quad .17$
$2 / 6-.30-.45 \quad .14-.06 \quad .17 \quad .99$
Table 71. Congruence coefficients, Boys x Girls + Boys $\begin{array}{lllllll} & 1 / 1 & / 2 & 1 / 3 & 1 / 4 & 1 / 5 & 1 / 6\end{array}$
$3 / 2 \quad .05 \quad .99 \quad .02-.24-.06 \quad .13$
$3 / 3 \quad .11-.00-.93 \quad .05 \quad .02 \quad .14$
$3 / 4 \quad .10-.35-.05 \quad .94-.15-.07$
$3 / 5 \quad .33 \quad .01-.03 \quad .21-.09 \quad .89$
3/6 . $24-.03-.23-.24 \cdot .91-.04$

Table 72. Congruence coefficients, Boys x Girls

.	.09	.09	-.17			
$3 / 1$.93	.42	-.19	.05	.09	-.09
$3 / 2$.06	.00	-.92	-.06	.06	
$3 / 4$.06	.76	.06	.13	-.36	-.36
$3 / 5$.46	.10	-.33	.00	.31	-.61
$3 / 6$.19	.35	.10	-.02	.31	.02

Table 73. Congruence coefficients, Boys x Boys $\begin{array}{llllll}3 / 1 & 3 / 2 & 3 / 3 & 3 / 4 & 3 / 5 & 3 / 6\end{array}$

$3 / 1$	1.00	.03	.04	.10	.26	.21

$3 / 2 \quad .03 \quad 1.00 \quad .00-.35 \quad .07-.05$
$3 / 3 \quad .04 \quad .00 \quad .99-.00-.06 \quad .18$
$3 / 4 \quad .10-.35-.001 .00-.23 \quad .23$
$3 / 5 \quad .26 \quad .07-.06-.00 \quad .99-.17$
$3 / 6 \quad .21-.05 \quad .18-.23-.17 \quad .99$

Next, the factor scores were computed by Lederman's shorter method.

Following this, a matrix was formed which included the factor scores of school achievement and intelligence and the factor scores obtained from the analysis just described for the attitudinal, persuasibility, dexterity and sociometric variables. Then, the correlations were computed for this battery, and factor analyses and canonical analyses were performed. The purposes which each of these operations were intended to serve and the information yielded by the operations will be presented below.
5. The Intercorrelations of Factor Scores

These correlations were computed with the objective of discovering how far the orthogonality condition was satisfied and of obtaining information about the connections between the school achievenent variables and the variables employed to account for school achievement. The interdependences revealed by the factor analyses provide information concerning the first point. Correlations, factor matrices and congruence coefficients are presented in rebles 74-85
Table 74. Correlation mintrix, factor scores, Girls, $\mathbb{N}=87$
1 bone econo:lics factor
2 partial factor of skill subjects
3 theoretical
subjects factor
4 specific factor of theoretical citizenshipschool subjects
5 methenatical factor-131 012-056-045 207
6 verbal factor $114-0404.59-049-0854.59$
7 nunerical factor -130-002-253-031 257001267
8 visualization and reasoning factor
9 co:prehension of
verbal relationship and numerical factor
10 inteIligence as -270 137-452-076 070-245-074-021-053 452 rated by teachers
11 attitude factor -043-235 125-022-122 055-009 023224009235
12 attitude-independent persuasibility factor
13 dexterity factor $087-344145043-176178107442$ 108-086-033-022 442
14 socionetric factor -059 020-265 067-061-174-047-223 $030 \quad 359007$ 021-052 359
15 general persuasibi--173-077-062 021 107-175 184: 076-062-147 002-012 019-007 184 lity factor
16 attitude-dependent 027-067-159-0ヶ1-117-086 214 031-042 120-018-164 019-018 12221 persuasibility factor

Table 75. Unrotated factor matrix, factor scores,
Girls, $N=87$

	h^{2}	1	2	3	4	5	6	7	8	.9
1	.33	.32	.15	-.01	-.08	-.22	.37	-.07	-.02	-.03
2	.44	-.32	.21	-.19	-.46	.08	-.06	.12	-.08	.05
3	.56	.67	.00	-.18	-.02	.06	-.07	.05	-.01	.15
4	.24	.12	-.00	.03	-.22	-.37	-.05	-.00	-.16	.07
5	.32	-.28	-.06	-.40	.14	.01	-.12	-.19	.04	.07
6	.49	.51	.08	-.15	-.09	.33	-.03	-.17	-.00	-.02
7	.36	-.18	-.46	-.22	.11	.06	.00	-.09	-.19	-.02
8	.53	.40	-.37	.20	-.36	-.01	-.18	.10	.02	-.03
9	.33	.33	.19	.29	.25	.10	.00	.07	.01	.10
10	.54	-.53	.05	.40	-.18	.21	-.10	-.05	-.00	-.00
11	.25	.16	.05	.20	.31	.08	-.15	.16	-.15	-.06
12	.23	.16	.04	.05	.10	-.30	-.24	-.07	-.06	-.17
13	.52	.40	-.44	.26	-.08	.06	.04	-.24	.10	.06
14	.40	-.33	.15	.38	.06	-.11	-.00	-.22	-.15	.16
15	.25	-.08	-.33	-.10	.16	-.13	-.09	.18	-.00	.18
16	.27	-.12	-.29	.09	.01	.09	.31	.19	-.14	-.01

Eigenvalues 6.147 1.982 .945 . 897 . 700 . 525 . $409 \quad .332 \quad .20$
Eigenvalues as a percentage $38.4212 .39 \quad 5.01 \quad 5.614 .384 .38 \quad 3.292 .56 \quad 2.081 .25$ of the number of variables

Table 75. Rotated factor matrix, factor scores, Girls, $N=87$

1. home econo- . 32 . 04 . $19-.14-.00-.02 \quad .51$ mics factor
2. partial factor $\underset{\text { of skill }}{\operatorname{partial}} \mathrm{factor} .41-.14 \quad .20 \quad .04-.56 \quad .01-.19$ subjects
3. theoretical .53 . 09 . 23 -. 62 . 17 -. 20 . 12 subjects factor
4. specific factor of theoretical . 21 . 17 . 03 . $05-.16-.33 \quad .20$ citizenshipschool subjects
5. mathematical $.28-.34-.33-.06-.16$. $00-.16$ factor
6. verbal factor . 42 . 13 . $21-.58$. 09 . $07-.05$
7. numerical $.31-.02-.51-.01-.08 \quad .19-.08$ factor
8. visualization $\begin{aligned} & \text { and reasoning } \\ & \text { 8 }\end{aligned}$. $68-.00-.16-.04-.13-.04$ factor
9. comprehension of verbal rela-. 31 . 05 . 26 -. 08 . 48 -. 02 . 04 tionship and numerical factor
10. intelligence as.54 . 03 . 20 . 54-. 12 . $19-.38$ rated by teachers
11. attitude factor
, $\quad .20$. 00 . $04-.01$. $42-.06-.11$
12. attitude-inde-
$\begin{array}{lllllll}\text { pendent persua-. } \\ \text { per }\end{array} 19 \quad .04-.04-.00 \quad .15-.40 \quad .04$ sibility factor
13. dexterity $\begin{aligned} & \text { factor }\end{aligned}$. 45 . $60-.10-.12 \quad .19$. 09 . 08
14. socionetric . 30-.07 . 15 .51 . 08 -. 03-. 05 factor
15. general persu-. 18 . 04-. 42 . 04 . 03-. 06-. 02 asibility factor
16. attitude-dependent persuasibility . $22 \quad .13-.16 \quad .15-.00 \quad .36 \quad .12$ factor
variances of factorn5.459 1.069 .918 1.386 .918 .569 . 597
Eigenvalues as a
percentage of the $34.12 \quad 6.69 \quad 5.74 \quad 8.67 \quad 5.74 \quad 3.56 \quad 3.77$ number of variables

Table 77. Correlation natrix, factor scores,
Boys, $N=70$

1	2	3	A	5	6	7	8	9	10	11	12	13	14	15	16

1 general factor of theoretical sub jects
2 partial foctor $073<32$ of skill subjects
3 hondorofts finctor
4 hore economics finctor
5 reeding factor -076-086 068060333
6 nunericnl 237120 01\& 257-084 287 factor
7 verbal fluency frotor
8 visualization and nunericol reasoning
9 comprehension of verbal relationship
10 non-verbol -405-266-28: 027 0\&1-064 064-149-034 405 reasoning
11 verbal and non-verbal reasoning
12 nttitude factor
13 socionetric factor

14 attitadeindependent persunsibility factor

15 dexterity factor
16 attitude. dependent -101-191 010-143 179-079 100 059-102 142 141 089 014-023-008 191 persuasibility factor

17 attitude dependent per--042-025 299-014 027-122 103132 018-115-138 083-049 077-144-136 : suasibility foctor

Table 78. Unrotated factor matrix, factor scores, $\begin{array}{llllllllll}h^{2} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9\end{array}$
1 . $57-.57-.07-.42-.10-.20-.06-.00-.03-.04$
2 . $23-.28 \quad .36 \quad .39-.27 \quad .05-.22-.01:-19-.03$
$3 \quad .48-.46-.33 \quad .26 \quad .15 \quad .01-.08-.06 \quad .17 \quad .14$
$\begin{array}{llllllllllll} & 4 & .47 & .14 & .49 & .14 & .31 & -.24 & .06 & -.01 & .15 & .06\end{array}$
$5 \quad .41 \quad .14-.27 \quad .16 \quad .18-.29-.32 \quad .22 \quad .03-.11$
$6-.36-.20 \quad .28-.16 \quad .16-.28-.06-.03-.17 \quad .26$
7 . $45 \quad .20-.45 \quad .06 \quad .08-.10-.32-.23-.14 \quad .05$
\& $\quad .42-.38-.29 \quad .00 \quad .32 \quad .04 \quad .21 \quad .07-.17-.02$
$\begin{array}{lllllllllll} & .54 & .04 & .39 & .55 & .13 & -.01 & .08 & -.04 & -.18 & .11\end{array}$
$10-.45 \quad .57-.09-.03-.04-.03 \quad .21 \quad .19-.06 \quad .14$
$11 \quad, 44 \quad .10 \quad .35-.07 \quad .47 \quad .23-.12-.05 \quad .10-.02$
$12-29-.12-.12-.23 \quad .19-.12 \quad .20-.19-.23-.13$
$\begin{array}{lllllllll} & .47-.50 & .28-.25 & .04 & .18-.09 \quad .12 & .09-.03\end{array}$
14 . $28-.05 \quad .12-.01-.07-.43 \quad .07 \quad .23 \quad .06-.09$
$15 \quad .54 \quad .48 \quad .23-.39-.03-.07-.12-.26 \quad .04-.10$
$\begin{array}{llllllllll} & .24 & .13-.20-.13 & .24 & .14-.10 & .24-.07-.09\end{array}$
$\begin{array}{lllllllll} & .33-.18-.25 & .24 & .04 & -.17 & .17-.23 & .22-.09\end{array}$

Eigen- $43.3510 .53 \quad 8.83 \quad 6.75 \quad 4.32 \quad 3.80 \quad 3.01 \quad 2.69 \quad 2.091 .23$
values as
a percentage
of the number of
variables

Table 79. Rotated factor matrix, factor scores,

$$
\begin{array}{lllllll}
n^{2} & 1 & 2 & 3 & 4 & 5 & 6
\end{array}
$$

1. general factor .57-.65-. 5 3-. $15-.19-.24$. 10 of theoretical subjects
2. partial factor . $49-.20-.12 \quad .63$. 09 -. 10 . 13 of skill subjects
3. handcrafts .43-. 18-.59 . 02-.07 .07-. 17
4. home. economirs . 45 . 01 . 14 . 02 . $63-.17$. 02 factor
5. reading factor . 35 . $07-.06-.00$. $05-.06-.57$
(Table 79 continues)
6. numerical . $25-.36$.07-.09 . $25-.21-.00$ factor
7. verbal fluency $.37 \quad .14-.03-.04-.17 \quad .10-.55$ factor
8. visualization and numerical . $38-.13-.49-.34$. 00 . 11 . 03 ressoning
9. comprehension . 49 . $18-.16$. 36 . $52-.06 \quad .11$ of verbal rela-
tionship
10. non-verbal . 39 . 52 . 29 -. $16-.01-.02-.02$ reasoning

$$
.43-.13 \quad .18-.05 \quad .47 \quad .38 \quad .03
$$

non-verbal reasoning
12. attitude $.18-.09-.09-.39 \quad .00-.06 \quad .04$ factor
13. sociometric $.44-.59-.04 \quad .02 \quad .02 \quad .12 \quad .28$ factor
14. attitudeindependunt, $.22-.07 \quad .03-.04 \quad .10-.44-.03$ persuasibility factor
15. $\underset{\text { dexterity }}{\text { fector }} .46 \quad .06$. $66-.11$. $05-.00-.06$
16. attitudedependent .17 . 03 . $04-.20-.01$. $29-.19$ persuasibility factor
17. attitudedependent $.22-.10-.40-.04-.05-.19-.06$ persuasibility factor

Variances of 6.345 1.399	1.408	. 937	1.076	. 681	. 841
factors 51.81	8.74	7.86	5.64	3.70	3.01
Eigenvalues 51.8120. as a percentage					
of the number					

Table 80. Correlntion metrix, factor scores, Girls + Boys

1 general
factor of 394
theoretical
subjects
2 skill
subjects 030307
factor
3 hone econo- -162-009 210 nics fector
4 book-
keeping 118-039-102 257
factor
5 henderafts 134 100-158 099306
factor
6 verbal
238307 210-101 094 307
factor
7 special
numerical -308 $1170 \leq 0085-055000308$
factor
8 visualization
and reasoning103-158-003 136175 033-055 354
factor
9 numerical $217030132 \quad 21811.2052-0391.10237$
factor
10 perceptual
speed
-134-204-067-087-144-046 053 012-237 237
factor
11 non-verbal
reasoning factor
12 attj.t?de 159-011-026 001104 018-010 $022159006-080164$ factor
13 socionetric 307 133-037 072112 216-165 159 011-041-341 001 341 factor
14 attitude-
independent -118-084-012-119-003-167 104 043-017 145 054-040 011167 persuasibility factor
15 dexterity -007-133 135-267-306-050-104-354-022-146 284 038-094-025 354: factor
16 attitude- $\begin{array}{lllllllll}\text { dependent } & -066 & 002-002055 & 177-103 & 153 & 047-115 & 034-161 & 054-028-043-071 & 177\end{array}$ persuasibilit: factor
17 general per- 016 075-000-149 030 040-007 029-073-190 045 164 063-084 065001190 suasibility factor

Table 81. Unrotated factor matrix, factor scores.
Girls + Boys, $N=157$

Table 82. Roteted factor matrix, factor scores,

$$
\text { Girls + Boys, } N=157
$$

$$
\begin{array}{lllllll}
n^{2} & 1 & -2 & 3 & 4 & 5 & 6
\end{array}
$$

1. general factor of theoretical subjects
2. skill subjects factor
3. home economics factor
4. book-keeping factor
$.48-.21-.23-.57-.18 \quad .08-.11$
$.36-.01-.59 \quad .09-.06 \quad .03-.01$
.26 .09-.04 .07-.05 .00 .49

$$
.31^{.}-.27 \quad .03 \quad .04-.38-.22-.18
$$

5. handerafts factor . $29-.40-.11$. $02-.13$. 21 -. 19
6. verbal factor
$.38-.11-.49-.18 \quad .00 \quad .02 \quad .29$
7. specinl numerical factor
8. visualization and reasoning fector
9. numerical factor . $31-.09$. $02-.13-.51$. 00 . 15
10. perceptual speed . $28-.11$. 19 . 03 . 41 -. $24-.03$ factor
11. non-verbal .44 . 57 . 21 . $20-.05-.00 \quad .12$ reasonine factor
12. attitude factor . $12-.07$.03-.07-.10 . $31-.03$
13. socionetric factor. $31-.29-.30-.36$. 08 . $01-.01$
14. attitude-inde- . 08 -. 45 . 19 . 07 . 17 -. 09.04 pendent persuasibility factor
15. dexterity factor . 40 . 57 . $06-.16$. 03 . 15 . 11
16. attitude-depen- . 15 -. 19 . 00 . 24 . 06 . 15 -. 17 dent persuasibility factor
17. general persuasi- . 21 . $05-.09$. 00 . 03 . $44 \quad .03$ bility factor
$\begin{array}{llllllll}\text { variances of } & 5.159 & 1.460 & .948 & .964 & .735 & .527 & .522\end{array}$ $\begin{array}{lllllllll}\text { factors } \\ \text { Eigenvalues as } & 30.35 & 8.59 & 5.58 & 5.68 & 4.33 & 3.10 & 3.07\end{array}$ a percentage of the number of variables

Table 83. Congruence coefficients
Girls + Boys X Girls + Boys

	$1 / 1$	$1 / 2$	$1 / 3$	$1 / 4$	$1 / 5$	$1 / 6$
$1 / 1$	1.00	.22	.20	.18	.01	.29
$1 / 2$.22	.99	.26	.16	-.23	-.08
$1 / 3$.20	.26	.99	.22	-.19	-.00
$1 / 4$.18	.16	.22	.99	-.16	.02
$1 / 5$.01	-.23	-.19	-.16	.99	.00
$1 / 6$.29	-.08	-.00	.02	.00	.99

Table 84. Congruence coefficients Girls x Girls

	$1 / 1$	$1 / 2$	$1 / 3$	$1 / 4$	$1 / 5$	$1 / 6$
$1 / 1$	1.00	.04	-.26	.24	-.09	. .22
$1 / 2$.04	.99	-.11	.14	-.19	. .11
$1 / 3$	-.26	-.11	1.00	-.24	.25	-.36
$1 / 4$.24	.14	-.24	.99	-.14	.22
$1 / 5$	-.09	-.19	.25	-.14	.99	-.26
$1 / 6$.22	.11	-.36	.22	-.26	.99

Table 85. Congruence coefficients Boys x Boys

$:$	$1 / 1$	$1 / 2$	$1 / 3$	$1 / 4$	$1 / 5$	$1 / 6$
$1 / 1$	1.00	.22	.03	.01	.12	-.34
$1 / 2$.22	.99	-.06	.17	.02	.06
$1 / 3$.03	-.06	.99	.25	-.12	.18
$1 / 4$.01	.17	.25	1.00	-.05	.17
$1 / 5$.12	.02	-.12	-.05	.99	-.08
$1 / 6$	-.34	.06	.18	.17	-.08	.99

The intercorrelations of the factor scores of the school achievenent variables are negligjble for each of the three groups. Thus, the orthogonaiity condition is satisfied almost perfectly.

The intercorrelations of the factor scores of the intelligence varinbles are negligikle in the boy group. By contrast, interdependencies emerige both in the girl group and in the combined group. These interdependences nust be token into account in the interpretation of the results of the canonical analysis.

The interrelations in the third group of variables can be estimated on the basis of the intercorrelations of the factor scores and the congruence coefficients computed.

The correlations between the foctor scores are negligible. The congruence coefficients furnish information about the interrelations between the attitudinal and persuasibility variablis.

The intercorreletions of factor scores can also be employed to obtain information on the interrelations between the school achievement factors and the factors used to account for the variance of the school achievement factors.

In the interpretation of the interrelations, the signs of the correlations need particular attention. The factors, as they emerged from the various factorial operations, had either a positive or a negative sign or were bipolar; the sign of a factor can be reversed by turning the factor axis through an angle of 180°. The computer programmes erployed did not lead to factor reflections. The appropriate sign can be determined by making use of the original rotated factor matrices as well. It would be an advantage, however, if the programes could be formulated in such a way that factor reflection would be possible during the operation itself.

The interrelations found for the girl group are as follows (not including those that did not reach the .05 level of significance):

The factor of home economics is interrelated with the factor of intelligence as rated by teachers.

The partial factor of skill subjects is interrelated with the dexterity factor, the verbal comprehension factor, the numerical factor, the attitude factor and the factor of intelligence as rated by teachers.

The theoretical subjects factor is interrelated with the verbal factor, the factor of intelligence as rated by teachers, the sociometric factor, the factor of verbal and numerical comprehension, the numerical factor and the visualization and reasoning factor.

The specific factor of theoretical citizenship school subjects is interreleted with the visualization and reasoning factor.

The mathematical school achievement factor is interrelated with the numerical factor, the visualization and reasoning factor and the verbal comprehension and numerical factor.

The following interrel tions are found for the boy group: The general factor of theoretical subjects is interrelated with the sociometric factor, the non-verbal ressoning factor, the verbal comprehension factor, the numerical factor and the attitude factor.

The partial factor of skill subjects is interrelated with the verbal comprehension factor, the non-verbal
reasonine factor, the dexterity factor, the sociometric factor, the attitude factor and the factor of attitudedejendent persuasibility.

The handcrafts factor is interrelated with the dexterity factor, the factor of attitude-dependent persuasibility, the non-verbal reasoning factor end the visualization and reasoning factor.

The home economics factor is interrelnted with the verbal comprehension factor, the factor of verbal and non-verbal reasoning, the numerical factor and the verbal fluency factor.

The reading factor is interrelated with the verbal fluency factor.

The interrelations for the combined group are as follows:

The general theoretical subjects factor is interrelated with the non-verbal reasoning factor, the numerical special factor, the sociometric factor, the verbal factor and the numericel factor.

The skill subjects factor is interrelated with the verbal factor, the perceptual speed factor ond the sociometric factor.

The home economics factor is interrelated with the verbal factor.

The book-keeping factor is interrelated with the dexterity factor and the numerical factor.

The handerafts fector is interrelnted with the dexterity factor and the non-verbal reasoning factor.

The factor score intercorrelation matrices also furnished information on the interrelationships between the variables chosen as those in terras of which school achievement was to be described. The content of these interrelations would be of some interest. Nevertheless, this aspect will not be discussed at this point. For purposes of interpretation and the canonical analysis, it should only be pointed out here that there were correlatio nal relationships between these variables. The emergence of these correlations was made possible by the fact that the factor scores for the descriptive variables were based on two separate factor analyses. The factor score correlation matrix will be utilized as an aid in the interpretation of the canonical analysis.
6. The Interrelations between Factor Scores, as Sugesested by the Factorial Models

The writer found it desirable to have the information on the interrelationships between the factor scores for school achievement and the descriptive variables, coatained in the correlation matrices; to this end, the battery was factorized by the principal factor method and a varimax rotation was carried out. This factor analysis can also be utilized in the interpretation of the canonical analysis. The results are presented in Tables $75,76,78,79,81$ and 82.

The following interrelations, based on a six-factor rotation, emerge for the sirl group.

The mathematical school achievement factor forms a dimension in combination with the visualization and reasoning factor and the dexterity factor.

The mathenatical school achievement factor is interrelated with the numerical factor and the general persuasibility factor.

The theoretical subjects factor is interrelated with the verbal factor, the factor of intellicence as rated by teachers and the sociometric factor.

The partial factor of skill subjects is interrelated with the comprehension of verbal relationship and numerical factor and the attitude factor.

The specific citizenship school theoretical subjects factor is interrelated with the factor of attitude-independent persuasibility.

The home economics factor is interrelated with the factor of intelligence as rated by teachers.

The six-factor rotation reveals the following interrelations for the boy group:

The general theoretical subjects factor is interrelated with the non-verbal reasoning factor and the sociometric factor.

The handcrafts factor is interrelated with the dexterity factor and the visualization end reasoning factor.

The partial skill subjects factor is interrelated with the attitude factor.

The home economics factor is interrelsted with the verbal comprehension fector and the verbal and non-verbal reasoning factor.

The reading factor is interrelated with the verbal fluency factor.

The following interrelations emerge for the combined group:

The β Eneral theoretical subjects factor is interrelated with the perceptual speed factor and the sociometric factor.

The home economics factor is interrelated with the dexterity factor and the visualization and reasoning factor.

The skill subjects factor is interrelated with the attitude factor.

The book-keeping factor is interrelated with the numerical factor.

The hndcrafts factor is interrelated with the special numerical factor.

The above approach to the determination of the interrelations between the various groups of variables is superior to the determination of these interrelationships undertaken at the separate variable level, in that here an attempt was made to eliminate the interrelationships of the variables within each particular group through the factor score estimation technique. As was seen, however, this attempt was not perfectly successful: interrelationships of variables belonging to one and the same group were also involved in the rotated matrices. Inspection
of the variances of the factors and the commalities of the school achievement variables reveals thet the proportion of the variance for the boy group that was accounted for by the battery was larger than the corresponding proportion for the girl group. This difference will be discussed in greater detail in Part IV. The information provided by the factor analyses on the interrelationships between the intelligence variables and the other test variables can be utilized in the interpretation of the canonical analysis. The value of the above approech to the determination of interrelationships, based on factor analysis, is limited by the fact that the statistical significance of the findings cannot be evaluated. On the other hend, the interrelationships to be revealed by the following canonical analysis can be tested for their statistical significance.
7. The Results Based on Canonical Analysis

It should be pointed out, initially, that the reductio in the nuriber of dimensions, effected by means of factor scores, renders the situation interpretationally manageable. However, when the weights obtained for the canonical vectors are interpreted, results yielded by previous operations must be resorted to. None of the weights exceeded unity. This sugsests that multicollinearity did not play a very noticeable part, if any. The above analysis of the factor score correlations revealed intercorrelations between the descriptive variables. This suggests the presence of multicollinearity in the weights of the descriptive variables. Yet, the correlation matrices and the factor analyses carried out can be used as an aid in interpretation in such a way that the weichts can be evaluated correctly as regards their order of magnitude, and as regards their signs, in particular. The informat concerning the canonical analyses is presented in Tables 86-88.

Table 86. Canonical correlation at the factor level,

$$
\text { Girls, } N=87
$$

Rc	Wilks lambda	Chi^{2}	Degrees of freedom	$\mathrm{p}<$
1. .738	.197	125.906	55	.001
2. .512	.542	47.488	40	ns
3. .383	.733	24.061	27	ns
4. 304	.859	11.800	16	ns
5. .232	.946	4.290	7	ns

M_{1} vectors
var/vec

	1	2	3	4	5
6	-.22	.53	.19	-.25	.27
7	.41	-.10	.35	-.16	-.25
8	-.18	.07	-.80	-.61	-.23
9	-.27	-.08	.10	-.13	.36
10	.58	-.05	.08	-.42	.67
11	-.21	-.28	.22	-.18	.23
12	-.06	-.40	.07	-.16	-.30
13	-.26	-.57	.42	.33	.07
14	-.05	-.28	-.48	.01	-.22
15	.09	-.07	.38	-.57	.08
16	-.16	-.30	-.28	.43	.32

(Table 87 continues)

M_{2}						
vectors						
var/vec	1	2	3	4	5	
1	-.12	.19	-.17	.96	-.30	
2	.41	.76	-.52	-.04	.08	
3	-.69	.60	.24	-.37	-.03	
4	-.02	-.32	-.36	-.44	-.78	
5	.43	.29	.67	.08	-.52	

Table 87. Canonical correlation . t the factor level, Boys, $N=70$

Rc
WiCks lambda
Chi ${ }^{2}$
Degrees of $\mathrm{p}<$ freedom

60	.001
44	.001
30	.01
18	ns
8	ns

M_{1} vectors
$\begin{array}{ccccc}\mathrm{var} / \mathrm{Vec} 1 & 2 & 3 & 4 & 5 \\ -.21 & .36 & .04 & -.20 & -.31\end{array}$
$7-1.03-.34-.48 \quad .44-.31$
$\begin{array}{lllllll} & . & .37 & .00 & -.07 & .03 & -.06\end{array}$
$9-.73-.08 \quad .04 \quad .36 \quad .19$
$10 \quad .03 \quad-.42 \quad .42 \quad-.15 \quad .05$
$11-.23-.27 \quad .20-.58-.58$
$12 \quad .22 \quad .19 \quad .16-.29 \quad-.04$
$13-.04 \quad .41 \quad-.16 \quad .26 \quad .24$
$14-.01 \quad .06-.09 \quad .39 \quad-.75$
$15 \quad .30 \quad .24 \quad .54 \quad .44 \quad .02$
$16 \quad .14 \quad-.17 \quad-.15 \quad .14 \quad-.09$
$17-.10-.11-.15-.58-.10$
(Table 87 continues)
M_{2} vectors

var/vec	1	2	3	4	5
1	.33	.88	-.13	.15	-.30
2	-.73	.20	-.27	.48	.35
3	-.19	-.08	-.71	-.68	-.07
4	-.60	.23	.35	-.33	-.61
5	.04	-.31	-.38	.62	-.62

Table 88. Canonical analysis of the factor level,

$$
\text { Girls + Boys, } N=157
$$

Rc Wilks lambda $\mathrm{Chi}^{2} \quad$| Degree of |
| :--- |
| freedom |$\quad \mathrm{p}<$

1.	.698	.263	194.67	60	.001
2.	.511	.514	97.156	44	.001
3.	.435	$.69 j$	53.125	30	.01
4.	.280	.857	22.546	18	ns
5.	.266	.929	10.690	8	ns

$$
M_{1} \text { vectors }
$$

$$
\begin{array}{rrrrrr}
v_{\text {var }} \text { vec } & 1 & 2 & 3 & 4 & 5 \\
7 & -.24 & .35 & -.56 & -.13 & -.45 \\
8 & -.13 & .11 & . .42 & -.37 & .18 \\
9 & .29 & -.13 & .15 & -.36 & -.38 \\
10 & -.32 & .28 & .20 & -.11 & . .08 \\
11 & -.47 & -.13 & -.31 & -.24 & -.29 \\
12 & .12 & .05 & .16 & .22 & -.02 \\
13 & .17 & -.09 & -.14 & .02 & .47 \\
14 & -.01 & .17 & -.06 & .30 & -.46 \\
15 & -.18 & .77 & .06 & -.45 & .07 \\
16 & .08 & -.17 & .01 & .03 & . .82 \\
17 & -.01 & .15 & -.16 & .33 & -.22
\end{array}
$$

M_{2} vectors

var/vec	1	2	3	4	5
1	.74	.57	.28	-.05	.30
2	.35	-.29	-.84	.17	.25
3	.30	.18	-.24	-.77	-.51
4	.13	-.72	.24	-.53	.37
5	.39	-.36	.24	.32	-.77

In the case of the girl group, only the first canonical correlation is statistically significant ($\mathrm{p}<.0 \mathrm{O} 1$). Here, the variance of the theoretical subjects factor, the mathematical school achievement factor and the partial skill subjects factor is accounted for to a statistically significant extent by the factor of intelligence as rated by teachers and the numerical factor.

Three statistically significant canonical correlations are obtained for the boy froup.

The first pair of axes ($\mathrm{p}<.01$) : the variance of the partial skill subjects factor and the home economics factor is accounted for by a statistically significant extent by the verbal comprehension factor, the visualization and numerical reasoning factor and the dexterity factor.

The second pair of axes ($p<.001$) : the variance of the general theoretical subjects factor and the reading factor is accounted for by the non-verbal reasoning factor, the numerical factor, the verbal fluency factor and the sociometric factor.

The third pair of xis $\mathrm{p} \leqslant .01$) : the variance of the handcrafts factor (the home economics factor and the reading factor) is accounted for by the dexterity factor
(the verbal fluency factor and the non-verbal reasoning factor).

Three of the canonical correlations obtained for the combined group are statistically significant.

The first pair of axes (p ?. U 11) : the theoretical subjects general factor - and the factors of skill subjects, home economics and hendcrafts, combined with it - is accounted for by the verbal factor, the non-verbal reasoning factor and the perceptual speed factor.

The second pair of axes ($\mathrm{p}: 001$) : the variance of the book-keeping factor, the theoretical subjects factor and the handcrafts factor is accounted for by the dexterity factor, the numerical special factor and the verbal factor.

The third pair of axes (p く.01) : the variance of all the school achievement factors, considered as a whole, is accounted for by all the intellifence factors.

The canonical correlations which were not sufficiently large to be statistically significant might also be employed as guidelines. They will not, however, be discussed here.

When the information furnished by canonical analysis about a situation where the interrelations between the various school achievement variables are eliminated is interpreted, it should be taken into account that the results appear in the form of linear combinations; and, thus, the information itself is combined in character. More specific information could be obtained by subjecting each of the school achievement variables then to multiple-regression analysis. Such an analysis will not, however, be underteken here.

The factual information included in this part will be discussed in Part IV.

References

Ahmevanra, Yrjö. 1954. Transformation Analysis of inctorial Deta. Arn. Acad. Sci. Fenn. Sor. B. Tom. r8, 2 .
" 1957. On the Unified rictor Theory of Mind.Ann. Acad. Sci. Penn. Ser. B. Tom. 106.
" 1963. On the Mathematical Theory of Transformation An lysis. Alkoholipol. Tutkimuslait. julk. n:c 1. Ammatinval innanohjauksen testistö I. Kulkulaitosten ja ylelsten töiden ministeriön ammatinvalinnanohjaustoimiston julkaisu (duplicate).
Anderson, T. W. 1962. An Introduction to Lultivariate Statisticnl An?lysis. John Viley and Jons. Inc. Now Yori.
Bjerstedt, Âke. 1963. Sociometriska metoder. Almqvist Wiksell. Stockholm.
Bloom, B. - F. Peters. 1961. The Use of Acndemic Prediction Scales for Counseling and Solecting College Entrants. Tres Fress. Jew York.
Cavonius, Göstr. 1961. Kansakouluoppilaiden arvosteleminen. WSOY. Porvoo-Helsinki.
Cooley, William W. - Paul R. Lohnes. 1962. Multivariate Procedures for the Behrviorel Sciences. John wiley and S̃ons. Inc. New York - London.
Dahllof, Urban. 1960. Kuraplaneundersönningar i matematik och modersmalet. Impiriska studier över kursinnehållet i den grundlaggande skolnn. 1957 ârs skolberedning III. Stetens offentlign utredninger 1960: 15.
Blias, Gabricl. 1954. The ramily adjustment Tost. Rommars, H. H. ed. isychometric iffilintos. Chicngo.

Eskole, Antti. 1962. Sosiologien tutkimusmenetclmät I. wisoy. Yorvoo - Helsinki.
Iskolr, Antti. 1967. Sosiologian tutkimusmenctelmät II. WSOY. Porvoo - Helsinki.
Gronlund, Normen T. 1965. Nonsurement and Eveluntion in Tenching. The Macmilann Compnny. New York.

Harman, Harry H. 1962. Modern actor Analysis. The University of Chicrgo Fress. Chicrgo.
He:rmen, E. \therefore " 1963. Univocnl or Orthogonal Dstimetion of Orthogonil inctors. Psychometrikn. Vol. 23. No. 2. 161-172. Heinonen, Veikko. 1957. Kätevyys ja sen kehittyminen kouluiän aikañ_Act^ fceld. Pard.Jyvaiskyläensis. VIII.Jyväskylä.
" 1960. Knsonkoululnisturl 1 skut idon rakent t. . . et.

" 1963. Differentiation of Primary Mental Abilities. Jyväskylä Studies in Education, Psychology and Social Research. 5. Jyväskylä.
" 196́3. a. Alykkyystestejii lahjakkuuden eräiden alkeistekijäin mittamista verten. Centre for wacational Research, University of Jyväskylä. No. 1.
" 1964. Differentianlipsykologir. Jyväskylä.
Johannesson, I. - D. Hagnusson. 1960. Social-och personlighotspsykolofisk faktorer i neletion till skolans differentiering. 1957 ârs skolberedning IV. Statens offentliga utredninger. 42.
Henrysson, iten. 1963. Faktornalys av betyg. Ped.-payk. inst. Iärarhögskolan i Stockholm. No. 5 .
Henricson, S. D. 1S61. Högsetadieelevernes instälning till yrken, ämnen och ämnesval mm. 1957 års skolberedning. Stockholm.
Kaiser, H. $\mathrm{Q}^{\text {. 1953. The Varimax Criterion for Analytic Rotation }}$ in Factor Analysis. Psychometrika. Vol. 23. No. 3. 187-200. Karvonen, Juhani. 1963. Iukutaidon rakenne. Centre for Educational Rosearch. University of Jyväskylä. No. 7 .
" 1965. Historian koulusefvutukset kansakoulussa. Centre for Educntionel Research. University of Jyväskylä. No. 14 .
Kendall, M. G. 1961. A Course in inultivariate Analysis. Charles Griffin and Company Limited. London.
Koort, Peep, 1959. Studier i provbedömning och betygsëttning. I. Objektivitetsanalys. Metod och till:mping med häneyn till uppsats- och essebedömningen. Uppsaln Universitets irsskrift. No. 6 .

Koort, Peep. 1960. Studier i provbedömning och betygsättning. II . Subjektivitetseffekter, samspels- och nivåeffekt. III. Frågeuppgifternas faktorstruktur. Uppsala Universitets Arsskrift. No. 9.
" 1964. Koulun kokeet. Otava. Helsinki.
Koskenniemi, Matti. 1943. Koululuokan vienoisyhteiskunta.
Otava. Helsinki.
" 1952. Sosiaalinen kasvatus koulussa. Otava. Helsinhi. Kröstiö, O. K. 1968. A Study of Teacher Role Expectations. Ann. Acad. Sci. Fenn. Ser. B. Tom. 154, 1.
Lavin, D. E. 1965. The Prediction of Academic Performance. Russel Sage Found. New York.
Ledorman, W. 1939. On a Shortened Nethod of Estimation of Mental Ractors by Regression. Psychometrika. 4. 109-116.
Marklund, Sixten - Sten Henryoson - Rolf Paulin. 1968. Studieprognos och studieframgåns. Statens offentliga utredningar. 25. Stockholm.

Markkanen, Touko. 1964. Transformaatioanalyysista. Alkoholipoliittisen tutkimuslaitoksen tutkimusseloste. No. 4. McNenar, Quinn. 1962. Psychological Statistics. John Wiley and Sons. New York - London.
McQuitty, Luuis L. 1957. Elementary Linkage Analysis for Isolating Orthogonal and Obligue Types and Typal Relevancie Ed. and Psych. Measurement. Vol. 17. No. 2. 207-229. " 1961. Elementary Factor Analysis. Fsych. Reports. Southern University Press. No. 9. 71-78.
Morrison, Donald F. 1967. Multivariate Statistical Methods. McGraw-Hill Inc. New York.
Mustonen, Seppo. 1966. Symmetrinen transformaatioanalyysi. Alko holipoliittisen tutkimuslaitoksen tutkimusseloste. No. 24 . Niskanen, Erkki A. 1964. Suostutaltovuuden aluo swi. yhtoydet :lykkyyton jo information lihteisiin. Reports from the Department of Psychology, University of Jyväskylä. No 61. Pitkänen, Pentti. 1967. Ärsyke- ja reaktioanalyyttisten faktorointitulosten vastaavuudesta. Jyväskylä studies in Education, Psychology and Social Research. No. 13.

Schramm, Wilbur. 1962. Mass Communication. Paul R. Fransworth. Ed Innual Reriew of Psychology. Vol. 23. 251-284. Seal, Hilary. 1964. Multivariate Statistical inalysis for Biologists. Methuen and Co Itd. Iondon.
Swedner. H. 1960. Ecological Differentiation of Habits and Attitudes. CWK Gleerup. Lund.
Takala, Martti - Erkki A. Niskanen. 1963. Konsalniskoulun oppilaiden asenteet koulua yhteiskuntaa ja työelämää kohtann. Centre for Educational Resoarch, Iniversity of Jywiskylä. No. 8.
Thurstone, I. I. i959. The Moasuronent of Values. The University of Chicago Press.
Vahervuo, Toivo. 1958. Arvosanojen antaminen. Otava. Helsinki. Vahervuo, Toivo - Yrjö ihmavaara. 1958. Johdatus faktorianalyysi以SOY. Porvoo-Heliainki.
Vernon, P. E. Ed, 1957. Secondary School Selection. Methucn. London.

Previous Issues in this Series, Available from the Institute
No. 1 The Effectiveness of Punishments and the School Climate by OLLI SIPINEN. May, 1957. 10 pp.
No. 3 On Deceit Practiced in Finnish Grammir Schools at Written Tasks by OLAVI PÄIVÄNSALO. Nov., 1957. 5 pp.
No. 4 Comparison between Reading Comprehension and Reading Aloud by KAISA HÄLINEN. March, 1958. 9 pp.
No. 6 The Awarding of School Marks by TOIVO VAHERVUO. Sept., 1958 5 pp .
No. 8 Motives for the Choice of the Teaching Profession Correlate with Success in the Entrance Examination and in Student Teaching by MATTI KOSKENNIEMI. Feb., 1g60. 11 pp.
No. 12 Factors Constituting Classroom Climate by OIJI SIFTNEN. March, 1963. 10 pp .
No. 13 On the Changes in the Educational Attitudes of Young Teache by VÄINÖ HEIKYINEN. March, 1963. 14 pp.
No. 14 Teacher Training in Retrospection. A Preliminary Report by VÄNÖ HEIKKINEN. Feb., 1964. 21 pp.
No. 15 Placement of Young Elementary School Teachers by MATII KOSKENNIEMI. May, 1965. 9 pp.
No. 16 Some Problems in Combining the Individual Tutors' Marks in a Final Mark in Teaching Ability by JOHANNES AJIKOSKI. March, 1966. 25 pp .
No. 17 The Finnish Senior Secondary Research Project. I. General Presentation of the Project and Its Original Subjects by ANNA-LIISA SYSIHARJU. Sept., 1967. 31 pp.
No. 18 The Finnish Senior Secondary Research Project. II. Depart from Junior Secondary and Transfer to Senior Secondary by ANNA-IIISA SYSIHARJU. Oct., 1967. 52 pp.
No. 19 Relationships between Absences from School and Certain Fac Related to School. A Study on Elementery School Grades Three to Six by PERTII KANSANEN. Nov., 1967. 10 pp.
No. 20 On the Anxiety Associated with School Attendance and the Grammar School Entrance Examination by EEVA FATJAS. May, 1968. 16 pp.
No. 21 SCHOOI ACHIEVENENT LIND PERSONALITY. I:Design and Hypotheses, IV:Results and Discussion by ERKKI i. NIGKANEN. Oct., 1958. $60 \mathrm{pp}$.
No. 22 SCHOOL ACHIEVEMENT AND PERSONALITY.II:Operations at the Variablo Lovel by ERKKI A.NIDKNEM. Oct., 1968. 124 pp.

Also published by the Institute
The Dev* ament of Young Elementary School Teachers. A Folls u_{0} Annales Academiae Scientierum Fennicae, B 138 By KOSKENNIEMI with Contributions by VÅNÖ HEIKKIN and u unANNES ALIKOSKI. 1965. 635. pp.

